Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

trans-Bis[1-methyl-3-(p-nitrophenyl)triazenido 1 -oxide- $\kappa^{2} N^{3}$,O]dipyridinenickel(II)

Manfredo Hörner, ${ }^{\text {a* }}$ Julieta Saldanha de Oliveira, ${ }^{\text {a }}$ Jairo Bordinhao ${ }^{\text {a }}$ and Johannes Beck ${ }^{\text {b }}$

${ }^{\text {a }}$ Departamento de Quimica, Universidade Federal de Santa Maria, Caixa Postal 5071, 97110-970 Santa Maria, RS, Brazil, and ${ }^{\text {b }}$ Institut für Anorganische Chemie der Rheinischen Friedrich-Wilhelms-Universität, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
Correspondence e-mail: hoerner@base.ufsm.br

Received 24 September 2002
Accepted 30 October 2002
Online 20 November 2002
In the centrosymmetric title complex, $\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}_{3}\right)_{2^{-}}\right.$ $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}$], the coordination geometry about the Ni^{2+} ion is octahedral, with two deprotonated 1-methyl-3-(p-nitrophenyl)triazenide 1-oxide ions, viz. $\left[\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NNN}(\mathrm{O}) \mathrm{CH}_{3}\right]^{-}$, acting as bidentate ligands (four-electron donors). Two neutral pyridine (py) molecules complete the coordination sphere in positions trans to each other. The triazenide 1 -oxide ligand is almost planar, the largest interplanar angle of $8.80(12)^{\circ}$ being between the phenyl ring of the p-nitrophenyl group and the plane defined by the $\mathrm{N}_{3} \mathrm{O}$ moiety. The $\mathrm{Ni}-\mathrm{N}_{\text {triazenide }}, \mathrm{Ni}-\mathrm{O}$ and $\mathrm{Ni}-\mathrm{N}_{\mathrm{py}}$ distances are 2.0794 (16), 2.0427 (13) and 2.1652 (18) A, respectively.

Comment

Despite the fact that complexes of triazene N-oxides have been widely investigated in recent decades, the structure of nickel(II) complexes involving deprotonated 1,3-disubstituted triazenide 1 -oxide ligands, viz. $[R \mathrm{NNN}(\mathrm{O}) R]^{-}$, continue to attract interest (Dutta \& Sharma, 1981; Ciunik et al., 1991). However, only two examples of six-coordinate nickel(II) complexes with triazenide 1 -oxide as a ligand have been reported in the literature. In these examples, the triazenide 1-oxide ligand is incorporated as part of a larger chelating group (Karmakar et al., 1993a,b). As part of our investigations

(I)
of the synthesis and characterization of metal complexes incorporating triazene 1 -oxide derivatives, we report here the structure of the title complex, (I), which is a centrosymmetric

Figure 1
Perspective view of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
hexacoordinated mononuclear $\mathrm{Ni}^{\mathrm{II}}$ complex, with deprotonated 1-methyl-3-(p-nitrophenyl)triazenide 1 -oxide ions and neutral pyridine molecules as ligands. Compound (I) is the first example of a triazenide 1 -oxide complex with a hexacoordinated Ni^{2+} ion and two different kinds of ligands (Fig. 1).

Deviations from normal $\mathrm{N}-\mathrm{N}$ and $\mathrm{N}-\mathrm{C}_{\text {aryl }}$ bond lengths (Table 1) underline the delocalization of the π electrons over the $\mathrm{N}-\mathrm{N}-\mathrm{N}$ chain of the $\mathrm{N} 13-\mathrm{N} 12-\mathrm{N} 11-\mathrm{O} 1$ group and the p-nitrophenyl substituent. The $\mathrm{N} 13-\mathrm{N} 12$ [1.332 (2) Å] bond length is longer than a normal double bond ($1.24 \AA$), $\mathrm{N} 12-\mathrm{N} 11[1.273(2) \AA$] is shorter than a normal single bond (1.44 A) (International Tables for X-ray Crystallography, 1985, Vol. III, p. 270) and $\mathrm{N} 13-\mathrm{C} 11$ [1.391 (3) \AA] is shorter than expected for an $\mathrm{N}-\mathrm{C}_{\text {aryl }}$ single bond. The $\mathrm{N}-\mathrm{N}$ bond lengths in complex (I) are almost identical to those of non-coordinated triazene 1-oxide molecules, where $\mathrm{N} 13-\mathrm{N} 12=$ 1.323 (2), 1.327 (4) and 1.332 (4) \AA, and $\mathrm{N} 12-\mathrm{N} 11=$ 1.263 (2), 1.264 (3) and 1.270 (4) £ (Samanta et al., 1997, 1998).

A typical feature of the coordinated deprotonated triazenide 1-oxide ligand is the lengthening of the $\mathrm{N}-\mathrm{O}$ bond; $\mathrm{N} 11-\mathrm{O} 1=1.329(2) \AA$ [comparative values for neutral noncoordinated triazene 1 -oxides are 1.288 (3) and 1.288 (2) \AA; Samanta et al., 1997, 1998]. The $\mathrm{N}-\mathrm{N}$ and $\mathrm{N}-\mathrm{O}$ bond lengths in (I) are also in good agreement with those found in bis[1-ethyl-3-(p-nitrophenyl)triazenido 1-oxide]nickel(II) (Ciunik et al., 1991), hereafter (II) [$\mathrm{N}-\mathrm{N}=1.260$ (3) and 1.337 (2) \AA, and $\mathrm{N}-\mathrm{O}=1.340(3) \AA$, while $\mathrm{Ni} 1-\mathrm{N} 13$ of 2.0794 (16) \AA $[1.871$ (2) \AA in (II)] and $\mathrm{Ni} 1-\mathrm{O} 1$ of 2.0427 (13) \AA [1.828 (3) \AA in (II)] are significantly longer (Ciunik et al., 1991). These significant differences between the $\mathrm{Ni}-\mathrm{N}$ and $\mathrm{Ni}-\mathrm{O}$ bond distances of both complexes can be explained by the expansion of the coordination number of the Ni^{2+} ion from four in (II) to six in (I) and the steric demand of the two additional axial pyridine ligands in (I). This observation is in good agreement with the $\mathrm{Ni}-\mathrm{N}$ and $\mathrm{Ni}-\mathrm{O}$ bond distances observed in other $\mathrm{Ni}^{\mathrm{II}}$ complexes with octahedral coordination, such as $\left[\left\{\mathrm{H}_{3} \mathrm{CN}(\mathrm{O}) \mathrm{NNC}_{6} \mathrm{H}_{4} \mathrm{~S}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NN}(\mathrm{O}) \mathrm{N}\right.\right.$ $\left.\left.\mathrm{CH}_{3}\right\} \mathrm{Ni}\right][\mathrm{Ni}-\mathrm{N}=1.984$ (8) and 1.993 (8) \AA, and $\mathrm{Ni}-\mathrm{O}=$ 2.060 (7) and $2.075(8) \AA]$ and $\left[\left\{{ }^{n} \operatorname{PrN}(\mathrm{O}) \mathrm{NNC}_{6} \mathrm{H}_{4} \mathrm{SMe}_{2} \mathrm{Ni}\right]\right.$
[$\mathrm{Ni}-\mathrm{N}=1.972$ (4) and 1.970 (4) \AA, and $\mathrm{Ni}-\mathrm{O}=2.048$ (4) and 2.051 (4) Å] (Karmakar et al., 1993a,b).

Due to the strong π-acidity of the nitro group, which favours the delocalization of the π electrons and the conjugation between the C11-C16 phenyl ring and the NNNO moiety, the triazenide 1-oxide ligand shows only a slight deviation from planarity [the angles between the C11-C16 phenyl ring and the $\mathrm{O} 11 / \mathrm{N} 1 / \mathrm{O} 12$ and $\mathrm{N} 13 / \mathrm{N} 12 / \mathrm{N} 11 / \mathrm{O} 1$ planes are 5.5 (4) and $8.80(12)^{\circ}$, respectively]. In addition to this electronic effect, steric interactions involving the axial pyridine ligands can also be associated with the small interplanar angle of $8.80(12)^{\circ}$. In contrast, the related four-coordinated nickel complex, (II), shows a deviation from planarity for the ligand, characterized by an $\mathrm{N} 12-\mathrm{N} 13-\mathrm{C} 11-\mathrm{C} 16$ torsion angle of 27.5 (3) ${ }^{\circ}$ (Ciunik et al., 1991). The C11-C16 phenyl ring (r.m.s. deviation $0.0068 \AA$) and the N21/C22-C26 pyridine ring (r.m.s. deviation $0.0031 \AA$) are planar within experimental error. The Ni1-N21 bond distance of 2.1652 (18) can be compared with the values found in the related complex cis$\left[\mathrm{Ni}\left\{\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NC}(\mathrm{OEt}) \mathrm{NC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{5}\right\}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right] \quad\left(\mathrm{Ni}-\mathrm{N}_{\mathrm{py}}=\right.$ 2.150 and $2.131 \AA$; Beyer et al., 1999). The nitro O atoms show a large thermal motion, indicated by their elongated displacement ellipsoids (Fig. 1). Split peaks for these atoms were not observed and consequently a disorder model was not used.

Experimental

$\left[\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](654 \mathrm{mg}, 1 \mathrm{mmol})$ was dissolved, with heating, in a mixture of methanol (50 ml) and ethyl acetate (25 ml). A solution of 1 -methyl-3-(p-nitrophenyl)triazene 1 -oxide ($392 \mathrm{mg}, 2 \mathrm{mmol}$) in methanol (25 ml) and triethylamine (5 ml) was added under continuous stirring and heating. After 10 min , pyridine (5 ml) was added to the reaction mixture, which changed colour to deep red. Stirring was continued for 1 h . Red plate-shaped crystals of complex (I), suitable for X-ray analysis, were obtained by slow evaporation of the solvents at room temperature (yield: $91 \mathrm{mg}, 15 \%$; m.p. 498 K).

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$	$D_{x}=1.506 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=607.22$	
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=10.473(2) \AA$	Cell parameters from 25
$b=14.961(3) \AA$	reflections
$c=8.569(2) \AA$	$\theta=2.0-25.0^{\circ}$
$\beta=94.028(10)^{\circ}$	$\mu=0.78 \mathrm{~mm}^{\circ}$
$V=1339.4(5) \AA^{-1}$	$T=294(1) \mathrm{K}$
$Z=2$	Prism, red
	$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

Ni1-O1	$2.0427(13)$	$\mathrm{N} 1-\mathrm{C} 14$	$1.449(3)$
Ni1-N13	$2.0794(16)$	$\mathrm{N} 11-\mathrm{N} 12$	$1.273(2)$
Ni1-N21	$2.1652(18)$	$\mathrm{N} 11-\mathrm{C} 1$	$1.455(3)$
O1-N11	$1.329(2)$	$\mathrm{N} 12-\mathrm{N} 13$	$1.332(2)$
O11-N1	$1.226(3)$	$\mathrm{N} 13-\mathrm{C} 11$	$1.391(3)$
$\mathrm{O} 12-\mathrm{N} 1$	$1.225(3)$		
			$122.0(2)$
O1-Ni1-N13	$76.73(6)$	$\mathrm{O} 12-\mathrm{N} 1-\mathrm{O} 11$	$124.29(16)$
O1-Ni-N21	$89.12(6)$	$\mathrm{N} 12-\mathrm{N} 11-\mathrm{O} 1$	$113.61(17)$
N13-Ni1-N21	$87.59(7)$	$\mathrm{N} 11-\mathrm{N} 12-\mathrm{N} 13$	$113.86(13)$
N11-O1-Ni1	$109.92(11)$	$\mathrm{N} 12-\mathrm{N} 13-\mathrm{Ni} 1$	

Data collection

Enraf-Nonius CAD-4
diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scan
(Spek, 1990)
$T_{\min }=0.799, T_{\max }=0.926$
8301 measured reflections
2373 independent reflections
1888 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.036 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-12 \rightarrow 12 \\
& k=-15 \rightarrow 17 \\
& l=-10 \rightarrow 10 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \quad \text { intensity decay: }<1 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0333 P)^{2} \\
&+0.4419 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

The positional parameters of the H atoms were obtained geometrically, the $\mathrm{C}-\mathrm{H}$ distances fixed ($0.93 \AA$ for $\mathrm{Csp} p^{2}$ and $0.96 \AA$ for $\mathrm{Csp}{ }^{3}$ H atoms), and the atoms refined as riding on their respective C atoms, with an isotropic displacement parameter of 1.2 times the U_{eq} value of the attached $\mathrm{C} s p^{2}$ and 1.5 times the U_{eq} value of the attached Csp ${ }^{3}$ atom. The methyl group was refined as a rigid group, with rotation around the $\mathrm{N} 11-\mathrm{C} 1$ bond as a free variable.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work has received partial support from CNPq (Proc. 475734/01-7) and FAPERGS. MH and JB thank CNPq, and JSO thanks CAPES for grants.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1398). Services for accessing these data are described at the back of the journal.

References

Beyer, L., Richter, R., Wolf, R., Yaumseil, J., Lino-Pacheco, M. \& Angulo Cornejo, J. (1999). Inorg. Chem. Commun. 2, 184-187.
Ciunik, Z., Wolny, J. A. \& Rudolf, M. F. (1991). Acta Cryst. C47, 2539-2541.
Dutta, R. L. \& Sharma, R. (1981). J. Sci. Ind. Res. 40, 715-737.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Karmakar, S., Choudhury, S. B., Ray, D. \& Chakravorty, A. (1993a). Polyhedron, 12, 291-296.
Karmakar, S., Choudhury, S. B., Ray, D. \& Chakravorty, A. (1993b). Polyhedron, 12, 2325-2329.
Samanta, C., Mukherjee, A. K. \& Mukherjee, M. (1998). Acta Cryst. C54, 1544-1546.
Samanta, C., Saha, S. C. \& Mukherjee, A. K. (1997). Acta Cryst. C53, 16571658.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

